
WHITE PAPER

Creating Flexible
Hardware Systems
with FPGA Partial
Reconfiguration
Nicolas Morin,
FPGA Design Engineer

WHITE PAPER 2

Background
Partial Reconfiguration (PR) allows FPGAs to dynamically change modules without
disrupting other parts of the design. This is a feature that FPGA vendors are building into
their newer generations of FPGAs, allowing for increased flexibility and functionality in
digital systems. Users can partition the FPGA fabric into reconfigurable regions which
are then reprogrammed using partial configuration files. PR proves beneficial in systems
that communicate through PCIe™, which allows a user to dynamically reload a subset of
the FPGA image without losing PCIe communication. It also provides a critical method of
Intellectual Property (IP) protection as it removes the need to store sensitive data in non-
volatile memory on the FPGA carrier.

In the new Xilinx® RFSoC technology, PCIe PR through the Programmable Logic (PL)
requires special considerations throughout the design process. This paper discusses
the use cases of partial reconfiguration as well as considerations when designing partial
reconfiguration firmware using the Xilinx Vivado design tool targeting the RFSoC.

Use Cases
Bitstream Encryption
Security has become critically important in embedded aerospace and defense systems.
Encryption is heavily used for assuring data integrity and privacy of communication
systems. Dynamic partial reconfiguration allows for a secure method of protecting FPGA
configuration files, with most of the design living in the reconfigurable partition. The static
region of the device would contain an external interface, a cryptography engine, and a path
to the internal configuration access port (ICAP) leaving the rest of the FPGA’s resources
free to be reprogrammed.

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

After the static configuration is loaded, the cryptography engine creates a public-private
key pair. The FPGA then sends the public key to a host computer that holds the partial
bitstream. The host then uses the public key to encrypt the partial bitstream and send it to
the cryptography engine for decryption. The cleartext partial bitstream is then sent to the
ICAP to configure the remainder of the FPGA without fear of interception.

WHITE PAPER 3

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

Dynamically Reconfigurable DSP Algorithms and SDR
Software defined radio enables flexible radio architectures that adapt to various protocols,
allowing for the customization of bandwidths, modulation frequencies, and decimation
rates on the fly. Using the RFSoC, the flexibility of software defined radio is enhanced using
hardware acceleration in the programmable logic. It’s necessary to further process the
digital signals in hardware, and in different ways without losing communication with a host
device. This can be solved by making FIR filters, FFTs, correlators, equalizers, encoders and
pattern recognition logic dynamically reconfigurable.

Fault-Tolerant System
Advances in technology are enabling higher levels of automation in military systems. One
example of this is the ability to detect faults which occur from aging and environmental
factors. Subsystems of the FPGA cannot be disrupted while subsystems are redesigned,
especially in mission-critical environments. Dynamic partial reconfiguration provides a
solution by leaving subsystems static, while reducing reconfiguration time to correct the
fault. This can be accomplished by partitioning the FPGA into tiles. Tiles with faults can
be reprogrammed with a partial bitstream in a fraction of the time needed to program the
entire FPGA, all while maintaining functionality of the other tiles.

WHITE PAPER 4

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

Potential solutions for dynamically loading
the FPGA image on RFSoC
PCIe through the PL
The RFSoC can reconfigure the PL from inside the PL itself through the internal
configuration access port (ICAP). This interface supports a 32-bit wide bitstream data
at 200 MHz, giving a bandwidth of 800 MB/s. While some UltraScale+ devices offer a
dedicated link to the ICAP through a specific PCIe block (called the MCAP), the RFSoC
does not have this feature. When designing for partial reconfiguration from inside the
PL, the ICAP instantiation along with the necessary partial bitstream data source and
accompanying data path elements should be implemented in the static partition.

PCIe or Ethernet through the PS
Partial reconfiguration can also be achieved through the Processor Subsystem (PS) of
the RFSoC. The PL can be reconfigured through the PS via the processor configuration
access port (PCAP). Since the PCAP is not accessible from the PL, a design would need to
support transporting the bitstream over PCIe or Ethernet to Linux® running on APU. Once
transported, the bitstream is sent to the fpga_manager kernel driver which invokes the
necessary secure calls to the CSU to DMA the bitstream to the PCAP.

Optimal Solution
The optimal solution depends on the RFSoC carrier design and the system design for the
end application. If the system is designed to control the RFSoC carrier through PCIe in the
PL, then this article describes how to be successful with that approach.

PCIe Partial Reconfiguration – Abaco BSP example
In this example, we will walk through the process of converting an existing RFSoC PL
design based in Vivado IP Integrator into a partial reconfiguration project. The project is
based on Xilinx’s XAPP1338, which provides a method to partially reconfigure through a
PCI Express™ interface. We wish to design the following system:

WHITE PAPER 5

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

Several steps must take place in order to turn an existing design into a partially
reconfigurable one:

1) We must convert reconfigurable modules into a format supported by a partial
 reconfiguration project in Vivado. Reconfigurable modules defined inside block
 diagrams are currently not supported by the tool. It is possible to work around this,
 however, if it is necessary to build reconfigurable modules in your design through IP
 Integrator.

2) The design must provide a route to a supported configuration access port.
 We will be using the ICAP in this example.

3) We must also decouple the logic between the static and reconfigurable partitions
 to prevent corruption during reconfiguration. This will be accomplished using the
 Partial Reconfiguration Decoupler IP from Xilinx.

4) We will floorplan the reconfigurable partition by inserting Pblocks.

5) We will then format the bitstream using the write_cfgmem command for
 use by the ICAP.

6) We will walk through the process of supporting partial reconfiguration by the
 ICAP using PetaLinux.

The following workflow assumes that you are starting with an already completed block
design in Vivado 2018.3 or newer, targeting the Xilinx RFSoC. If using PetaLinux, the paper
also assumes the use of PetaLinux 2018.3 or newer.

Packaging Reconfigurable Modules as IP
Since IP source files are allowed inside reconfigurable modules, we will package a specific
block as an IP and import back into the project. We will then make necessary connections
from the original block design to the reconfigurable partition through HDL code. As an
example, we will start with the following design.

WHITE PAPER 6

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

We wish to make the dsp_placeholder block reconfigurable. First, copy the dsp_placeholder
block and paste it into a new block design. We are going to title the block design RM1.
Create interface ports to the block as shown in figure.

Make sure all interface ports have the correct associated clocks and reset polarity. If using
an AXI memory mapped interface, make sure the address editor is configured correctly.
Next, navigate to Tools > Create and Package New IP.

WHITE PAPER 7

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

 Select Package a block design from the current project. Select RM1.

Choose a User IP directory corresponding to the current project. If you do not have one,
then create one. We will save the IP inside the location <current_project>/IP/RM2.

WHITE PAPER 8

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

Instantiating the Reconfigurable Module
We will now instantiate the RM1 IP outside the block diagram. We will make all connections
from the RM1 IP to the block diagram with HDL code. We can now remove the RM1.bd file
from the source hierarchy.

We now need to delete the dsp_placeholder block from the original block design.

We will now have disconnected ports. Create interface ports to route them off the block
diagram. Make sure all ports have the correct associated clock ports and all reset signals
have the correct polarity.

WHITE PAPER 9

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

Right click on the block diagram source and create an HDL wrapper. Allow user edits to the
wrapper file.

Import the new RM1 IP. It should currently exist at the same level as the block design wrapper.

WHITE PAPER 10

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

Create a wrapper for the reconfigurable
module. The instantiation template can be
found in the IP sources pane.

Instantiate the reconfigurable module wrapper
underneath the block design wrapper, so it sits
one level below the top level.

We are now ready to enable the partial
reconfiguration mode. Go to Tools > Enable
Partial Reconfiguration.

We now have the option to create Partition
Definitions. We also have a new Partial
Reconfiguration Wizard section inside
the flow navigator. Right click on the
reconfigurable module and select Create
Partition Definition.

WHITE PAPER 11

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

We are going to title the partition RP. The reconfigurable module name will be called RM1.
You will then notice that RM1 inside the source hierarchy has a yellow diamond next to it to
signify it as a Reconfigurable Partition.

WHITE PAPER 12

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

Adding additional Reconfigurable Modules
To add another Reconfigurable Module, click on the Partial Reconfiguration Wizard. Add
another design source. We will title it RM2.

Automatically create configurations as well as configuration runs. You should now see two
reconfigurable modules listed under the Partition Definitions pane of Vivado.

WHITE PAPER 13

Instantiating the ICAP
In this design, we will be partially reconfiguring through the internal configuration access port
(ICAP). This SelectMAP style interface exists inside the PL of the RFSoC. We will make a path that
routes from the PCIe logic block through an AXI-Stream Interconnect, and a data width converter
to the ICAP. The AXI Stream Interconnect will allow the ICAP to be clocked differently than the
rest of the design. The interconnect normally provides data width conversion to create a width
of 32 bits for the ICAP; however, we have found it to be more reliable to instantiate a data width
converter deliberately when routing an interface off the block diagram.

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

WHITE PAPER 14

The maximum clock speed that the RFSoC ICAP supports is 200 MHz. The ICAP’s bit width
is 32 bits on the RFSoC. We will now need to instantiate the ICAP inside the block design
wrapper. We can do this with the following code:

ICAPE3_inst : ICAPE3
 generic map (
 ICAP_AUTO_SWITCH => “DISABLE”
)
 port map (
 AVAIL => axis_icap_tready,
 O => open,
 PRDONE => prdone,
 PRERROR => prerror,
 CLK => axi_lite_clk,
 CSIB => axis_icap_tvalid_not,
 I => axis_icap_tdata,
 RDWRB => ‘0’
);

The port description for the ICAPE3 are listed below:

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

Avail Output 1 High when ICAP is available

CLK Input 1 Clock input

CSIB Input 1 Active-low ICAP enable

I Input 32 Configuration data input bus

O Output 32 Configuration data output bus

PRDONE Output 1 High when partial reconfiguration is
complete. Goes low when FDRI packet
is seen and goes back high when
DESYNC is seen, or EOS is high

PRERROR Output 1 High when partial reconfiguration error
is detected

RDWRB Input 1 Read (high) or write (low) select input

More information regarding the ICAPE3 primitive can be found in Xilinx’s UG974.

WHITE PAPER 15

Partial Reconfiguration Decouplers
Depending on the design, the use of Partial Reconfiguration Decouplers may be required.
The reconfigurable partition can cause erroneous writes to the static logic while the PL is
reconfiguring. Partial Reconfiguration Decouplers act as a set of multiplexers. We will control
the decoupler with an AXI memory-mapped interface, although it is possible to control it with
a signal or an AXI stream interface. We will instantiate a Partial Reconfiguration Decoupler
between the rf converters and the reconfigurable modules as shown:

Assign the decoupler to an address in the register map. Writing a value of 0x1 to this
address will decouple the logic, while writing a 0x0 will recouple the logic. More information
can be found in Xilinx’s PG227.

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

WHITE PAPER 16

Floorplanning
After synthesis, we will need to floorplan the design. Each Reconfigurable Partition is required
to have a Pblock associated with it to assign physical resources to Reconfigurable Modules as
well as physically constrain the partition in a location on the chip. On the RFSoC, you will notice
that the RF converters have Pblocks associate with them by default in the bottom right. More
information can be found on Floorplanning can be found in Xilinx’s UG909.

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

We will place a Pblock next to the RF converters. This will help meet timing requirements,
since the DSP module physically connects to them. Create a Pblock by right clicking on
RM1 in the netlist pane on the left. Select Floorplanning > Draw Pblock. Click and draw on
the chip where you would like to create the Pblock. We will draw the following block:

WHITE PAPER 17

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

Notice the cyan and grey rectangles connecting the Pblocks. This is to provide visual aid as
to which floorplanned modules are physically connected. After the Pblocks are drawn, the
design is then ready for implementation and bitstream generation.

Formatting the Bitstream
We will need to format the bitstream for use by the ICAP. First, generate a bit file as you
would normally. You can then use the following command inside the Vivado TCL console:

write_cfgmem -format BIN -size 128 -interface SMAPx32 -loadbit {up
0x00000000 “/path_to_partial_bitstream.bit”} -file /path_to_partial_
bitstream.bin

More information about bitstream formatting can be found in Xilinx’s UG909.

Software Implications
The default configuration access port available for partial reconfiguration on the RFSoC
is the PCAP. This is controlled by the pcap_ctrl register inside the CSU. We must relieve
control from the PCAP and set it to the ICAP by setting bit 0 of address 0xFFCA3008.

WHITE PAPER 18

WE INNOVATE. WE DELIVER. YOU SUCCEED.
Americas: 866-OK-ABACO or +1-866-652-2226 Asia & Oceania: +81-3-5544-3973
Europe, Africa, & Middle East: +44 (0) 1327-359444
Locate an Abaco Systems Sales Representative visit: abaco.com/products/sales

abaco.com @AbacoSys
©2019 Abaco Systems. All Rights Reserved. All other brands, names or trademarks are property
of their respective owners. Specifications are subject to change without notice.

11/19

If using PetaLinux, access to the CSU registers is turned off in the default configuration mode. In
order to gain access, we need to set the SECURE_ACCESS_VAL flag inside the xpfw_config.h file
in the PMUFW. After building the image with the correct firmware, we can then send the following
command to the PetaLinux console:

echo 0xFFCA3008 0xFFFFFFFF 0x00000000 > /sys/firmware/zynqmp/config_reg

Additionally, any software interacting with devices in the PL must be aware of when partial
reconfiguration is taking place. An MMIO access may fail and potentially cause the APU to lock
up. Complex interactions with devices may be interrupted and leave software in a bad state. Due
to the nature of partial reconfiguration, users must take care to notify software before and after a
partial reconfiguration event so that proper shutdown and/or reinitialization can take place.

Conclusion
There are many examples of when PCIe PR through the PL on RFSoC-based carriers is the
optimal solution. It can be difficult to accomplish this without the proper knowledge and
experience up front. The example provided in this white paper offers the best possible starting
point for achieving success in this type of application.

Xilinx and Ultrascale+ are trademarks of Xilinx, Inc. PCIe and PCI Express are trademarks of PCI-
SIG. Linux is the registered trademark of Linus Torvalds. All other trademarks are the property of
their respective owners.

Xilinx and Ultrascale+ are trademarks of Xilinx, Inc. PCIe and PCI Express are trademarks of PCI-SIG. Linux is
the registered trademark of Linus Torvalds. All other trademarks are the property of their respective owners.

FIELD NAME BIT TYPE RESET VALUE DESCRIPTION

Pcap_pr 0 Rw 0x1 Controls the method for PL partial
reconfiguration
0x0 – ICAP/MCAP
0x1 – PCAP

Creating Flexible Hardware Systems
with FPGA Partial Reconfiguration

